
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FED-REACT: FEDERATED REPRESENTATION LEARN-
ING FOR HETEROGENEOUS TIME SERIES DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Motivated by high resource costs and privacy concerns that characterize centralized
machine learning, federated learning (FL) emerged as an efficient alternative that
allows the participating clients to collaboratively train global model while keeping
their data local. In practice, distributions of clients’ data vary over time and from
one client to another, creating heterogeneous conditions that deteriorate perfor-
mance of conventional FL algorithms. In this work, we study an FL framework
where clients train on heterogeneous time series data and introduce to these settings
Fed-REACT, a novel federated learning method leveraging representation learning
and evolutionary clustering. The algorithm consists of two stages: (1) in the first
stage, the clients learn a model that extracts meaningful features from local time
series data; (2) in the second stage, the server adaptively groups clients into clusters
and coordinated cluster-wise learning of task (i.e., post-representation) models for
local downstream tasks, e.g., classification or regression. We provided theoretical
analysis of the first stage of the proposed algorithm, and demonstrated its high
accuracy and robustness in experiments on real-world time series datasets.

1 INTRODUCTION

Distributed training of machine learning models has helped fuel recent advances in a variety of
applications including recommendation systems, image recognition, and conversational AI, to name
a few. Federated Learning (FL) (McMahan et al., 2017), in particular, received significant attention
as it facilitates collaborative privacy-promoting training of a global model that can subsequently be
deployed on the participating clients’ devices for local tasks. However, the now classical FedAvg
algorithm (McMahan et al., 2017) and its variants assume independent and identically distributed
(IID) data, which often does not reflect real-world scenarios. Indeed, since clients collect data
locally at different times and locations, the training sets are typically heterogeneous across clients in
terms of both volume and statistical distribution. Data heterogeneity has been recognized as a major
challenge in federated learning (Zhao et al., 2018) – when local models are trained on non-IID data,
simple (potentially weighted) averaging during aggregation generally results in underperforming
global models and may lead to unacceptable performance on local tasks. Consequently, a number of
techniques for mitigating the impact of data heterogeneity in FL has been explored (see, e.g., Li et al.
(2020) and the references therein). Moreover, when an FL system involves a large number of clients
(e.g., in cross-device scenarios), the communication overhead required to support the transmission
of local updates may become prohibitive. Such large-scale settings may also be characterized by
intermittent availability of the clients, rendering the coordination of the training process challenging.
To this end, approaches that group clients into clusters, deploy cluster-aware sampling strategies, and
ultimately train cluster-specific models, have been investigated in literature Mansour et al. (2020);
Kim et al. (2021).

In many real-world applications including healthcare, autonomous driving, and finance, the data
collected by clients naturally comes in the form of time series. While the above FL methods have
proven effective for static heterogeneous data, most are not designed to handle time series data
characterized by an additional layer of heterogeneity arising from the temporal dimension. Kim et al.
(2021) proposed a framework that leverages a generative adversarial network (GAN) to group users
and dynamically adjust resulting clusters without sharing raw data. However, this approach relies on
clustering snapshots of temporal data, which may lead to erroneous declarations of abrupt changes to
cluster membership over time. An alternative to snapshot clustering comes in the form of evolutionary

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

clustering (Xu et al. (2014)) which incorporates historical data to inform cluster membership decisions,
generally allowing for smoother transitions and more stable clustering solutions.

1.1 CONTRIBUTION OF THIS WORK

The contribution of this work can be summarized as follows:

1. To the best of our knowledge, this work is the first to formally investigate the problem
of federated self-supervised learning on heterogeneous time-series data. There are two
sources of data heterogeneity in such FL systems: Inter-client distribution diversity, arising
from the differences in data distribution across clients, and intra-client data heterogeneity,
i.e., potential non-stationarity of the data observed locally by each client. We propose
Fed-REACT, a novel Federated learning method leveraging Representation learning and
EvolutionAry Clustering for Time-series data, that consists of two learning phases: In the
first phase, which essentially deals with inter-client data heterogeneity, the clients rely on
self-supervised learning to collaboratively learn meaningful features, while in the second
phase, addressing intra-data heterogeneity, temporally-evolving clusters of distributionally
similar clients use the extracted features to train task (i.e., post-representation) models.

2. In order to accomplish the goal of the second phase of Fed-REACT, we leverage evolutionary
clustering to dynamically group clients based on the similarity of their task model weights.
This is rendered difficult by the variations in those weights which are exacerbated when
the training batches are small. To address this concern, we introduce an adaptive forgetting
factor which facilitates clustering based on both current as well as historical weights of
the task models, ensuring more accurate/stable clustering solutions. We investigate three
strategies aided by adaptive forgetting: (a) time averaging; (b) weighted averaging with
forgetting; and (c) Kalman smoothing utilizing expectation-maximization. The efficacy of
these strategies is presented in the results section.

3. We provide theoretical analysis of feature learning on time-series data in federated learning
systems. Specifically, we consider a global regret function for a linear feature model and
apply time-smoothed gradient descent for time-series data. We show that with properly
selected step and smoothing window size, the regret converges to a small value.

1.2 RELATED WORK

Federated learning allows participating clients to collaboratively train a global model while keeping
the training data local and private; the clients may subsequently deploy the resulting model to local
inference tasks. However, the heterogeneity of data that is generally collected at different locations
and times poses significant challenges. In particular, data heterogeneity often leads to performance
degradation of the trained models, motivating various efforts to address this issue.

On another note, self-supervised learning (SSL) has shown promise in distributed learning systems,
particularly when handling large imbalanced datasets (Wang et al., 2022). Unlike supervised learning,
SSL uses a two-stage approach: extracting features from unlabeled data, followed by utilizing these
features when training for downstream tasks. While SSL has proven effective for static data in fields
such as natural language processing and video processing, its applications to time series data have
received less attention Chen et al. (2020); Chen & He (2021); Chen et al. (2024).

In another development, Fortuin et al. (2018) and Franceschi et al. (2019) introduced methods for
learning temporal representations, for which the latter leveraged causal dilated convolution and
time-based negative sampling. Wu et al. (2022) considered multi-periodicity in time series and
proposed TimesNet to learn intraperiod- and interperiod-variations from temporal sequences. Nie
et al. (2022) designed a Transformer-based self-supervised method, PatchTST, to improve the long-
term forecasting accuracy. More recent work by Fraikin et al. (2023) and Eldele et al. (2024) has
explored self-supervised approaches to capturing temporal embeddings and long- and short-term
dependencies. TimeLLM Jin et al. (2023) further reprogrammed time series input into text prototype
representations to adapt large language models to time series forecasting. Despite these advancements,
most research on time series representation learning remains focused on centralized settings, with
relatively few studies addressing distributed learning systems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

When clustering time series data, evolutionary methods aim to account for the dynamic nature of the
objects being clustered. These methods often outperform snapshot clustering which only considers
data at specific time points. Examples of evolutionary clustering methods include Xu et al. (2014)
which introduced the Adaptive Evolutionary Clustering Algorithm (AFFECT), an iterative technique
that updates a weighted affinity function to maintain temporal continuity in clustering. Arzeno &
Vikalo (2019) subsequently proposed Evolutionary Affinity Propagation (EAP), a method that groups
data by message exchange on a factor graph. However, EAP is limited to offline scenarios and
struggles to handle streaming data effectively. In the federated learning system, clustering techniques
have been employed to group clients with similar data distributions. Ghosh et al. (2020) proposed
Ierative Federated Clustering Algorithm (IFCA), which determines cluster membership based on
similarity coefficients. Li et al. (2021a) proposed the Federated Soft Clustering (FLSC) method,
demonstrating that allowing overlapping cluster memberships can significantly enhance performance.
More recently, Mehta & Shao (2023) presented an agglomerative clustering method for federated
learning, which greedily identifies cluster centers through gradient updates.

1.3 PROBLEM STATEMENT

We consider a federated learning system with n clients in which each client collects local time series
data with features x ∈ Rd×T and label y, where d denotes the feature dimension and T denotes
the maximum length of the time series data. A server coordinates collaborative training of a global
model by collecting local updates from the clients, aggregating them, and distributing the aggregated
updates among the clients. The dataset at client i, containing the local time series data, is denoted
by Di(x, y). The distribution of Di varies from one client to another, naturally leading to the data
heterogeneity in the system. In a self-supervised learning framework, a feature-extraction function
fθ(·), parameterized by θ, is learned to extract the meaningful representations from the input data;
this is an encoder that learns the mapping Rd×T → Rd̂. The representations can then be utilized for
downstream supervised learning tasks. Depending on the task (e.g., regression or classification), a
lightweight task function fθtask

(·), parameterized by θtask, can be trained on the features extracted
from a much smaller set of labeled samples.

The remainder of the paper is organized as follows. Section 2 presents details of the proposed method.
Section 3 provides theoretical analysis of the algorithm’s performance. Section 4 reports experimental
results, while Section 5 concludes the paper.

2 ALGORITHM DEVELOPMENT

Our proposed approach is organized in two phases: in the first phase, the method learns lower level
representations using a feature model while in the second phase it captures higher level features and
facilitates downstream tasks. The main reasoning for such an organization is in meaningfulness of
sharing the lower level feature representations of input vectors across clients regardless of their local
data distributions. In the case of images, for example, two clients may own data coming from vastly
different distributions; however, objects in images typically share low level features such as edges
and corners. It would thus be desirable if feature model learning could include all clients regardless
of local data distribution – this is enabled by training the encoder in a federated manner. Specifically,
the encoder training is focused on minimizing the contrastive loss (Chen et al. (2020); Franceschi
et al. (2019)). Let the reference anchor xref be any given time series data, let {xneg}Rr=1 denote a set
of R randomly selected negative samples, and let xpos be a positive sample. Then the contrastive loss
function is defined as

L(xref , xpos, {xneg}Rr=1; θ) = − log(σ(f(xref ; θ)T f(xpos; θ)))

−
R∑

r=1

log(σ(−f(xref ; θ)T f(xneg(r); θ))), (1)

where f(· ; θ) denotes the output of the encoder parameterized by θ and σ(·) denotes the sigmoid
function. Minimization of the loss function ensures that the features extracted from the anchor xref
and its positive sample are similar to each other, while the features extracted from the anchor and its
negative samples differ from each other. For time series data, the positive sample is a sub-sequence

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

from the same trajectory, while the negative samples are sub-sequences from other trajectories. The
encoder being used is a Causal CNN with exponentially dilated convolutions, known to capture long
range dependencies more effectively than full convolutions (Franceschi et al., 2019). The complete
federated representation learning procedure is formalized as Algorithm 1.

In the second phase, the focus is shifted to downstream tasks. The task model captures higher level
features specific to local data properties; it is therefore meaningful that clusters of clients with similar
data distributions collaboratively learn shared task model weights. The choice of the architecture
of a task model is driven by the downstream task category: for classification tasks we adopt SVMs,
while for regression problems a simple linear layer trained using an ℓ2 loss function can be deployed.
Note, however, that clients cannot communicate label distributions due to privacy concerns; as an
alternative, we pursue clustering of the clients based on the weights of their respective task models.
A simple approach could be that the server collects task model weights from clients in each round
of training and employs Agglomerative Hierarchical Clustering to organize the clients into clusters.
Detailed description of this approach to clustering is formalized as Algorithm 3 in the appendix.

This clustering method, however, only considers snapshot of temporal data and is incapable of
accounting for the correlations within time series. Further challenges stem from the following:

1. The number of labeled samples used to train a task model is much smaller than the number
of unlabelled samples used to train the encoder.

2. Typically, clients can store labelled data only for a limited amount of time before the data is
deleted or replaced by newly collected samples.

Consequently, the task models trained in a single round (i.e., on a temporal snapshot of time series
data) may not be sufficiently reflective of the local data distributions, ultimately also leading to
incorrect clustering results. To make the clustering phase of our algorithm robust to training variations,
we rely on Adaptive Evolutionary Clustering (Xu et al., 2014) where the clusters are allowed to
evolve over time. Let us define the underlying similarity matrix at time t, ψt, which captures client
relationships within and across clusters. The observed similarity matrix, Wt, is a noisy version of ψt,
i.e.,

Wt = ψt +Nt, (2)
where each element of Wt, [Wt]i,j , denotes the cosine similarity between the vectorized parameters
of task models of clients i and j, and where Nt denotes the noise. Evolutionary Clustering Algorithm
(Chakrabarti et al. (2006)) incorporates the estimate of the similarity matrix at time t− 1, ψ̂t−1, using
a forgetting factor α, to obtain the current estimate

ψ̂t = αψ̂t−1 + (1− α)Wt, (3)
with initial W0 = 0. Adaptive Evolutionary Clustering Algorithm (AFFECT) by Xu et al. (2014)
builds upon this to propose an algorithm that iteratively estimates the forgetting factor at each time
instant to obtain both αt and ψ̂t,

ψ̂t = αtψ̂t−1 + (1− αt)Wt. (4)
Once the estimate ψ̂t is obtained, one can assign cluster membership to the clients using Agglomera-
tive Heirarchical Clustering as described previously.

Algorithm 1 Fed-REACT Phase 1: Encoder training

1: Input: Number of rounds T , number of clients K, initialized global encoder parameters θ0
2: for each round t = 1, 2, ..., T do
3: for each client k = 1, 2, ...,K do
4: Client k downloads current global model parameters θt−1

5: Client k updates parameters θkt using local time series data
6: Client k uploads updated parameters θkt to the server
7: end for
8: Server aggregates collected updates as

θt =

K∑
k=1

nk
n
θkt ,

where nk is the number of samples on client k and n =
∑K

k=1 nk
9: end for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Having discovered temporal dynamics of the underlying clusters of clients allows us to explore
several strategies for combining weights of task models (e.g., SVM parameters) calculated in different
rounds of training. In particular, we explore the following three approaches to combining parameters
of the cluster-specific task models evaluated throughout the training process:

1. Approach 1: Simple Temporal Averaging (A1). Parameters of the task model are obtained
by taking the sample mean, i.e.,

θ̂ctask,t+1 =
t

t+ 1
θ̂ctask,t +

1

t+ 1
θctask,t. (5)

Here, θctask,t denotes the parameters of the task model for cluster c computed solely based
on the temporal snapshot of data at time t, while θ̂ctask,t denotes the parameters computed
based on θctask,1, θ

c
task,2, ..., θ

c
task,t. The initial value θ̂ctask,1 is set to θctask,1.

2. Approach 2: Weighted Averaging with Forgetting (A2). In this approach we use the
adaptive forgetting factor αt returned by the evolutionary clustering algorithm to update the
weight estimate according to

θ̂ctask,t+1 = αtθ̂
c
task,t + (1− αt)θ

c
task,t (6)

3. Approach 3: Kalman Smoothing with Expectation Maximization (A3). In this approach,
we treat clustering solutions up to time t, {θctask,s}ts=1, as “measurements”, and find the
optimal linear estimate of θctask,t via the Kalman Filter (Welch et al., 1995). In other words,
we think of {θctask,s}ts=1 as if they were noisy observations of the true parameters of the
task model, evolving according a state space model with an unknown state transition matrix
F , innovation noise covariance Q, and measurement noise covariance R. These unknown
parameters are iteratively estimated via the Expectation-Maximization algorithm (Shumway
& Stoffer, 1982); details are provided in the appendix.

Algorithm 2 Fed-REACT Phase 2: Task model training with evolutionary clustering

1: Input: Number of rounds Ttask, number of clients K, cluster number C, trained encoder θT
2: for each round t = 1, 2, ..., Ttask do
3: for client k = 1, 2, ..,K do
4: Client k trains the task model on randomly sampled local dataset Mk

t
5: Client k uploads the parameters θktask,t of the task model to the server
6: end for
7: Server clusters clients based on the weights of the task models {θktask,t}Kk=1 using AFFECT

algorithm to obtain the cluster membership of C clusters, {Sc
t }Cc=1 and adaptive forgetting

factor αt.
8: for cluster c = 1, 2, .., C do
9: Server aggregates the task models of all clients within cluster Sc

t

θctask,t =
∑
k∈Sc

t

|Mk
t |∑

j∈Sc
t
|Mj

t |
θktask,t

10: if t ≥ Ttask or Sc
t = Sc

t−1 then
11: Compute θ̂ctask,t using Approach A1, A2 or A3
12: Server transmits θ̂ctask,t to all clients k ∈ Sc

t

13: end if
14: end for
15: end for

3 THEORETICAL ANALYSIS

In this section, we provide theoretical insights for the first phase of Fed-REACT algorithm, i.e.,
representation learning to heterogeneous time-series data. In particular, we focus on the convergence
property of the time-varying objective function under assumption that each client trains a linear
encoder via the dynamic time-smoothed gradient method. For the sake of tractability, we consider

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the SSL formulation simplified from equation 1 and utilizing a local loss function defined as

fSSL,k(θ) = −E[(θ(xk,i) + ξk,i)
T (θ(xk,i) + ξ′k,i)] +

1

2
∥θT θ∥2

at client k, where ξk,i and ξ′k,i denote random noise added to the data sample xk,i, while the global
objective is defined as

fSSL =

K∑
k=1

|Dk|
|D|

fSSL,k(θ).

This objective is a variant of the contrastive loss equation 1 obtained by replacing the normalization via
negative signals by an alternative regularization term. Optimizing fSSL is equivalent to minimizing
f(θ) = ∥X̄ − θT θ∥2, where X̄ =

∑
k

|Dk|
|D| Xk and Xk = Ex∼Dk

(xxT) = 1
|Dk|

∑|Dk|
i=1 xk,ix

T
k,i, the

empirical covariance matrix of client k’s data (Wang et al., 2022).

To proceed with the analysis, we make the following assumptions regarding the local loss function.

Assumption 1. 1. Each loss function ft,i is bounded above by M for all clients i and times t.

2. Each loss function ft,i is L-Lipschitz and β-smooth.

3. Each stochastic gradient descent ∇̃f(·) is unbiased and the standard deviation of the estima-
tor is bounded above by σ2. The error between the projected stochastic gradient Proj∇̃f(·)
and the stochastic gradient ∇̃f(·) is ϵproj = Proj∇̃f(·)− ∇̃f(·) with ∥ϵproj∥2 ≤ ϵ2.

Jin et al. (2017) have shown that the form of the objective function studied in our work is 16Γ-smooth
within the region {x|∥x∥2 ≤ Γ} for Γ ≥ λ1(X̄), implying that the first two assumptions are readily
satisfied. Note that the projected gradient applied by the proposed algorithm guarantees that x remains
within the region at all time steps. The last assumption is standard in optimization literature.

Next, let us specify the update rule applied by client k during the encoder learning phase. Specifically,
the updates follow time-smoothed gradient descent (Aydore et al., 2019), i.e., the local update is

θt+1,k = θt −
η

W

w−1∑
j=0

γjProj∇̃ft−j,k(θt−j)

while the global update is found as

θt+1 =
1

n

K∑
k=1

θt+1,k,

where w denotes the smoothing window size, W =
∑w−1

j=0 γ
j and η is the step size. Moreover, we

define the local regret at client k and the global regret as

St,w,γ,k(θt) =
1

W

w−1∑
j=0

γjft−j,k(θt−j)

and

St,w,γ(θt) =
1

K

K∑
k=1

1

W

w−1∑
j=0

γjft−j,k(θt−j),

respectively. It holds that

E[∇̃St,w,γ(θt)|θt] = ∇St,w,γ(θt), E[∇̃St,w,γ,k(θt)|θt] = ∇St,w,γ,k(θt),

and that

E[∇̃St,w,γ,k(θt)−∇St,w,γ,k(θt)|θt] ≤
σ2(1− γ2w)

W 2(1− γ2)
.

With this notation in place, we can obtain the following Lemmas and Theorem 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Lemma 1. Suppose all of the above assumptions are satisfied. Then for any γ ∈ (0, 1), β and η, it
holds that

(
η

4
− η2β

8
)∥∇St,w,γ(θt)∥2 ≤ St,w,γ(θt)− St+1,w,γ(θt+1) + St+1,w,γ(θt+1)− St,w,γ(θt+1)

+ η2
β

4

σ2(1− γ2w)

W 2(1− γ2)
+ (

η

4
− η2β

8
+
η2β

2
)ϵ2.

Lemma 2. Suppose all of the above assumptions are satisfied. Then for any γ ∈ (0, 1) and w, it
holds that

St+1,w,γ(θt+1)− St,w,γ(θt+1) ≤
M(1 + γw−1)

W
+
M(1− γw−1)(1 + γ)

W (1− γ)
.

Lemma 3. Suppose all of the above assumptions are satisfied. Then for any γ ∈ (0, 1) and w, it
holds that

St,w,γ(θt)− St+1,w,γ(θt+1) ≤
2M(1− γw)

W (1− γ)
.

Theorem 1. Suppose all of the above assumptions are satisfied. When η = 1
β , γ → 1−, it holds that

lim
γ→1−

1

T

T∑
t=1

∥∇St,w,γ(θt)∥2 ≤ 1

W
(64βM + 2σ2) +

5

8
ϵ2.

The theorem implies that when an appropriate step size and window size w are selected, the upper
bound is dominated by the second term, i.e., the projection error between the stochastic gradient
and the projected gradient. Therefore, the global regret approaches a (small) value specified by the
gradient projection error.

4 EXPERIMENTS

4.1 EXPERIMENTS ON THE RTD DATASET

Figure 1: Label distribution for the three clusters generated using β = 0.1.

Table 1: A comparison of self-supervised
and supervised learning.

Number of clients 10 50

LSTM - FedAvg 0.732 0.945

LSTM - Fedprox 0.804 0.896

LSTM - Ditto 0.863 0.859

LSTM - APFL 0.828 0.946

Algorithm 1 + SVM 0.992 0.948

We first evaluate our proposed scheme on the RTD
dataset (Alam et al., 2020) which contains 3D air-writing
trajectories for 2000 samples of each digit (0− 9). The
trajectories vary in length, with a maximum length of
100; shorter sequences are zero-padded to reach the max-
imum length.

The dataset is partitioned into three clusters, generated
using Dirichlet distribution with a parameter β = 0.1
which leads to highly heterogeneous clusters. An exam-
ple of label distribution is shown in Fig. 1; there, Cluster
1 is primarily composed of digits 3 and 6, Cluster 2 con-
tains digits 0, 1, 2, and 5, while Cluster 3 consists of
digits 4, 7, 8, and 9.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1.1 SELF-SUPERVISED VS. SUPERVISED MODELS

The first set of experiments compares the performance of self-supervised and supervised baselines
trained and tested on heterogeneous time series data. When the system has K = 10 clients, Cluster
1 and Cluster 2 each contain three clients while Cluster 3 contains four; when K = 50, Clusters
1, 2, and 3 comprise of 16, 16, and 18 clients, respectively. The local datasets are further divided
into training and testing sets, with a 90/10 split. As benchmarking algorithms we use a supervised
learning model – single-layer LSTM model with a feature embedding dimension of 128 and a hidden
size of 256. Each client performs local supervised training for 100 epochs with a batch size of
50, using the Adam optimizer with a learning rate of 0.001. A total of 10 communication rounds
are conducted, with model aggregation performed at the server. We investigated the following
state-of-the-art methods designed for federated learning with data heterogeneity.

• Fedprox by Li et al. (2020).
• Ditto by Li et al. (2021b). We set the regularization parameter λ to 0.0001 and the number

of accumulation steps to 10.
• Adaptive Personalized Federated Learning (APFL) by Deng et al. (2020). Here we set α

and αadaptive to 0.5 and 1, respectively.

For the self-supervised learning model trained via Algorithm 1 we consider causal time dilated CNNs;
this encoder consists of ten 1D convolutional blocks, with dilation increasing by a factor of two
with each layer. Each block uses leaky ReLU activation (negative slope 0.01), followed by a linear
layer that outputs features of size 320. The encoder is trained using contrastive loss as outlined in
(Franceschi et al., 2019). The task model is a SVM classifier that predicts one out of ten classes based
on the encoded features. Each client performs 500 training steps per communication round, with a
batch size of 10, using the Adam optimizer with learning rate 0.001.

The results in the second column of Table 1 demonstrate that in the system with 10 clients, the
self-supervised model significantly outperforms supervised baseline methods in the considered data-
heterogeneous scenario. The third column shows that our proposed approach maintains the superior
performance over baseline methods in the larger systems that involves 50 clients.

4.1.2 CLUSTERING PERFORMANCE

The second set of experiments evaluates different clustering methods and validates the performance of
Algorithm 2. The Dirichlet distribution parameter is set to β = 1.5. The training of task models uses
|Mk

t | = 64 labeled samples for client k at time t; a total of 60 communication rounds are conducted.

Table 2: Clustering performance in terms
of accuracy (averaged across clients). SC
stands for snapshot clustering, EC stands
for evolutionary clustering.

Number of clients 10 100

SC (No Past Value) 0.763 0.716

EC (No Past Value) 0.859 0.737

Fed-REACT w/ A1 0.909 0.750

Fed-REACT w/ A2 0.928 0.751
Fed-REACT w/ A3 0.943 0.739

IFCA 0.774 0.740

FLSC 0.83 0.729

The baseline clustering methods include snapshot clus-
tering (i.e., clustering based on the current values of
the task model coefficients) and IFCA (Ghosh et al.
(2020)) where the cluster membership is based on the
similarity coefficients. Quality of a clustering solution
is characterized by the Rand Score between the clus-
ter memberships obtained from the weights of the task
model and the ground truth. Recall that the Rand Score
is computed as follows: Let TP be the number of pairs
of clients correctly placed in the same cluster by an algo-
rithm, let TN be the number of pairs of clients correctly
placed in different clusters, and let TOT denote the total
number of possible pairs of clients; then the Rand Score
is calculated as (TP+TN)/TOT. Fig. 2 and Fig. 3 show
the results for 10 and 100 clients, respectively; for the
latter, Clusters 1, 2 and 3 contain 33, 33 and 34 clients,
respectively. Fig. 2 demonstrates that Fed-REACT con-
verges to the ground truth in as few as 3 communication
rounds, while snapshot clustering method struggles to
discover the ground truth due to training variations. The Rand Score of IFCA is a constant 0.2667
and is omitted from the figure. When the number of clients increases to 100, the Rand Score of
Fed-REACT still converges to the ground truth while the baselines suffer from oscillations and fail to
approach the ground truth.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: Rand Index Score vs. the ground truth
for Fed-REACT (our method) and the baseline
clustering methods (the system has 10 clients).

Figure 3: Rand Index Score vs. the ground truth
for Fed-REACT (our method) and the baseline
clustering methods (the system has 100 clients).

The next set of experiments, obtained on the RTD dataset, compares the accuracy of the clustering
assignments for the aforementioned settings with 10 and 100 clients. Specifically, for each algorithm
we calculate the instantaneous accuracy averaged over 60 rounds. Apart from snapshot clustering and
the IFCA method, we also include among baselines FL with Soft Clustering (FLSC) Li et al. (2021a).1
For Algorithm 2, we compare the accuracy obtained using the three approaches to computing the
weights of SVM discussed above. For Approach A3, we set R = rI , Q = qI , F = I , and P0 = I ,
and perform a grid search over r, q ∈ [0.001, 0.01, 0.1, 1, 10]. For completeness, we also include the
results obtained while ignoring past values of the task model weights.

For the above two baselines, we perform simple averaging across rounds (Approach A1). The
results are presented in Table 2. The second column, reporting results for the system with 10 clients,
indicates that by including historical information, evolutionary clustering methods are capable of
discovering the true structure of the clusters and generally achieve higher accuracy than snapshot
clustering techniques. Approach A3 further improves the performance of Fed-REACT in this system.
The last column in Table 2 considers an FL system with 100 clients. The representation learning
phase (Algorithm 1) is carried out for 10 rounds, while the task model (i.e., SVM) is trained for 200
rounds. Note that since the grid search over the initialization for 100 clients proved to be expensive,
we reused the initialization for Approach A3 obtained for the experiments involving 10 clients. This
may in part explain why in this setting the performance of Fed-REACT using Approach A3 lags
behind that of Fed-REACT using one of the first two approaches.

4.1.3 ABLATION STUDY

Lastly, we perform an ablation study exploring the relationship between heterogeneity, controlled by
the parameter β, and the achieved accuracy averaged across clients. To reiterate, smaller value of β
induces greater level of heterogeneity across clusters. We consider the FL system with 100 clients;
the number of clients per cluster remains the same as in the previous experiments. Since in the setting
with 100 clients Approach A3 lagged in performance behind Approaches 1 and 2, we exclude the
former from the ablation study. The results are presented in Table 3. As can be seen there, benefits of
clustering are more pronounced for highly heterogeneous settings. As the heterogeneity across the
clusters decreases, benefits of clustering diminish and the performance deteriorates.

β
SC (No

Past Value)
EC (No

Past Value)

Fed-
REACT w/

A1

Fed-
REACT w/

A2
IFCA FLSC

0.10 0.887 0.887 0.888 0.900 0.889 0.693
0.25 0.868 0.868 0.872 0.871 0.872 0.761
0.50 0.809 0.809 0.816 0.815 0.711 0.735
2.0 0.712 0.721 0.742 0.738 0.730 0.721

Table 3: The effect of heterogeneity on the performance. SC stands for snapshot clustering while EC
stands for evolutionary clustering.

1The Rand Score for FLSC could not be calculated as each client is assigned to more than one cluster.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTS ON THE SUMO EV DATASET

In this section, we consider Simulation of Urban Mobility (SUMO) dataset (Krajzewicz et al.,
2012). This set consists of data emulating vehicles driving under varying conditions including
temperature, humidity, elevation, and location. The task, unlike in the previous experiments, is
at core a regression – in particular, the goal is to predict the percentage of battery life available
given the 100-step multivariate time series data as the input. Consequently, while the encoder
architecture remains the same as before, instead of SVM we use a linear output layer. The ve-
hicles in the dataset have vastly different data amounts, ranging from just above 100 for some
to more than 1000 training samples for others. The battery life differs even among vehicles of
the same type, presenting further challenge to the client clustering task. The time series data
include information about latitude, longitude, elevation, temperature, speed, maximum possible
speed, acceleration, and vehicle type. The features are normalized before being fed into the models.

Table 4: Performance on SUMO
EV dataset: Fed-REACT vs. super-
vised learning baselines.

RMSE

LSTM - FedAvg 43.2

LSTM - Fedprox 42.3

LSTM - Ditto 42.0

LSTM - APFL 42.7

Fed-REACT (C=1) 24.4

Fed-REACT (C=3) 23.7

Fed-REACT (C=9) 13.0

Fed-REACT (C=25) 8.8

Fed-REACT (C=40) 5.8

Fed-REACT (C=50) 1.3

The dataset is divided into the training and testing subsets, with
a 90/10 split; there are 50 vehicles in the test set. The number
of clusters is varied from C = 1, indicating no personalization,
to C = 50, corresponding to the complete personalization of
the output layer.

Similar to the experiments involving the RTD dataset, we com-
pare Fed-REACT with the LSTM baselines. A crucial differ-
ence, however, is that for SUMO dataset we do not a priori
know the number of clusters. This is why we test the perfor-
mance of our method for various values of C, the total number
of clusters, with C = 1 denoting global averaging of the output
layer and C = 50 denoting complete personalization. The root
mean-square error (RMSE) averaged across clients is presented
in Table 4. As can be seen from the table, the higher the level
of personalization, the lower the incurred RMSE. These results
suggest that while federated learning of representation models
on SUMO dataset greatly helps extract meaningful features
from the temporal data therein, the time series generated by
different vehicles is exceedingly heterogeneous thus warranting
fully personalized output layers.

5 CONCLUSION

In this paper, we studied the problem of federated
self-supervised representation learning complemented by
(semi)personalized task model training. This is, to our knowledge, the first work to consider such
a learning problem in the setting where clients’ data are heterogeneous time series. The proposed
scheme, Fed-REACT, aggregates representation models globally and performs cluster-wise aggre-
gation of task models (e.g., SVMs for classification tasks and dense output layers for regression).
Convergence of the proposed representation learning scheme was studied theoretically, while experi-
mental results on RTD and SUMO EV datasets demonstrated advantage of Fed-REACT over existing
supervised learning baselines. Future work may explore the fully-decentralized setting where the
clients need to learn models for time series data without the help of a coordinating server.

REFERENCES

Md Shahinur Alam, Ki-Chul Kwon, Md Ashraful Alam, Mohammed Y Abbass, Shariar Md Imtiaz,
and Nam Kim. Trajectory-based air-writing recognition using deep neural network and depth
sensor. Sensors, 20(2):376, 2020.

Natalia M Arzeno and Haris Vikalo. Evolutionary clustering via message passing. IEEE Transactions
on Knowledge and Data Engineering, 33(6):2452–2466, 2019.

Sergul Aydore, Tianhao Zhu, and Dean P Foster. Dynamic local regret for non-convex online
forecasting. Advances in neural information processing systems, 32, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. Evolutionary clustering. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
554–560, 2006.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 15750–15758, 2021.

Yiyue Chen, Haris Vikalo, and Chianing Wang. Fed-qssl: A framework for personalized federated
learning under bitwidth and data heterogeneity. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 11443–11452, 2024.

Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, and Xiaoli Li. Tslanet: Rethinking
transformers for time series representation learning. arXiv preprint arXiv:2404.08472, 2024.

Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch. Som-
vae: Interpretable discrete representation learning on time series. arXiv preprint arXiv:1806.02199,
2018.

Archibald Fraikin, Adrien Bennetot, and Stéphanie Allassonnière. T-rep: Representation learning for
time series using time-embeddings. arXiv preprint arXiv:2310.04486, 2023.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. Advances in neural information processing systems, 32, 2019.

Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework for
clustered federated learning. Advances in Neural Information Processing Systems, 33:19586–
19597, 2020.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724–1732. PMLR, 2017.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Yeongwoo Kim, Ezeddin Al Hakim, Johan Haraldson, Henrik Eriksson, José Mairton B da Silva,
and Carlo Fischione. Dynamic clustering in federated learning. In ICC 2021-IEEE International
Conference on Communications, pp. 1–6. IEEE, 2021.

Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura Bieker. Recent development and
applications of sumo-simulation of urban mobility. International journal on advances in systems
and measurements, 5(3&4), 2012.

Chengxi Li, Gang Li, and Pramod K Varshney. Federated learning with soft clustering. IEEE Internet
of Things Journal, 9(10):7773–7782, 2021a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International conference on machine learning, pp. 6357–6368.
PMLR, 2021b.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Manan Mehta and Chenhui Shao. A greedy agglomerative framework for clustered federated learning.
IEEE Transactions on Industrial Informatics, 19(12):11856–11867, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Robert H Shumway and David S Stoffer. An approach to time series smoothing and forecasting using
the em algorithm. Journal of time series analysis, 3(4):253–264, 1982.

Lirui Wang, Kaiqing Zhang, Yunzhu Li, Yonglong Tian, and Russ Tedrake. Does learning from de-
centralized non-iid unlabeled data benefit from self supervision? arXiv preprint arXiv:2210.10947,
2022.

Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. arXiv preprint arXiv:2210.02186,
2022.

Kevin S Xu, Mark Kliger, and Alfred O Hero III. Adaptive evolutionary clustering. Data Mining and
Knowledge Discovery, 28:304–336, 2014.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

The appendix is structured as follows: Section A describes the steps of training task models while
utilizing snapshot clustering; Section B presents details of Kalman smoothing and the EM algorithm;
Section C provides the calculation of the forgetting factor αt in the AFFECT algorithm; Section D
contains detailed proofs of Lemmas and Theorem 1; Section E shows the experimental results on
time-smoothed gradient descent.

A TASK MODEL TRAINING ASSISTED BY SNAPSHOT CLUSTERING

Snapshot clustering groups clients based on the current weights of the task model / output layer, and
then averages those weights to arrive at a cluster-specific task model. This procedure is formalized
as Algorithm 3 below. Note that snaphshot clustering may provide satisfactory performance when
clients have exceedingly large number of labeled samples in training batches so that the models do
not experience training variations.

Algorithm 3 Training of the task model assisted by snapshot clustering

1: Initialize: Global encoder parameters θT obtained after T rounds of federated representation
learning presented in Alg. 1

2: for client k = 1, 2, ..,K do
3: Client k trains the task model on the labeled local data.
4: Client k uploads the parameters θktask of the task model to the server
5: end for
6: Server clusters clients based on the weights of the task model {θktask}Kk=1 and employs Agglom-

erative Hierarchical Clustering.
7: for cluster c = 1, 2, .., C do
8: Server aggregates the task model within cluster. Let Sc

t denote the set of clients in cluster c.
Then

θtask
c =

∑
k∈Sc

t

mk

Mc
θktask

where mk is the number of labeled samples on client k and Mc =
∑

k∈Sc
t
mk

9: Server transmits θctask to all clients k ∈ Sc
t

10: end for

B KALMAN SMOOTHING AND THE EM ALGORITHM

B.1 KALMAN SMOOTHER

Consider the following state space model relating states xt ∈ Rn and measurements yt ∈ Rm:
xt = Fxt−1 + qt, (7)
yt = Hxt + rt. (8)

The state equation matrix F ∈ Rn×n and the process noise qt ∈ N (0, Q) drive the evolution of
the hidden state across time whereas the measurement matrix H ∈ Rm×n and the measurement
noise rt ∈ N (0, R) drive the observability of the hidden state. In our experiments, we assume that
the system parameters F,H,Q,R remain constant over time. If the initial state x0 is Gaussian, i.e.,
x0 ∈ N (µ0,Σ0), it can be shown that the minimum mean square error (MMSE) estimate of xt given
measurements y1, ..., yt, denoted by x̂+t and equal to E[xt|y1, y2, ..., yt], can be found as a linear
combination of the measurements. In particular, the MMSE estimate x̂+t can be found via recursive
expressions of the Kalman filter given below.

Predict Step:
x̂−t = Fx̂+t−1 (9)

P̂−
t = FP̂+

t−1F
T +Q (10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Update Step:
Kt = P̂−

t H
T (HP̂−

t H
T +R)−1 (11)

x̂+t = x̂−t +Kt(yt −Hx̂−t) (12)

P̂+
t = (I −KtH)P̂−

t , (13)
where P̂−

t = E[||xt − E[xt|y1, y2, ..., yt−1]||2] and P̂+
t = E[||xt − E[xt|y1, y2, ..., yt]||2].

Once we have iterated through all the N measurements available, we can perform Kalman Smoothing
through a backward pass using the Rauch-Tung-Streiber (RTS) algorithm. Let x̂+t|N denote the

smoothed estimate of xt given the measurements y1, ..., yN , and let P̂+
t|N denote the corresponding

error covariance. The backward pass is initialized with x̂+N |N = x̂+N and P̂+
N |N = P̂+

N . Then

Gt−1 = P̂+
t−1F (P̂

−
t)−1 (14)

x̂+t−1|N = x̂+t−1 +Gt−1(x̂
+
t|N − x̂−t) (15)

P̂+
t−1|N = P̂+

t−1 +Gt−1(P̂
+
t|N − P̂−

t)GT
t−1 (16)

As seen in Appendix B.2, the Expectation-Maximization algorithm requires calculation of “lag one
smoothed covariance” defined as P̂+

t,t−1|N = E[(xt − x̂+t|N)(xt−1 − x̂+t−1|N)T |y1, ..., yN]. The
recursive equation for lag one smoothed covariance can be calculated as

P̂+
N,N−1|N = (I −KNH)FP̂+

N−1 (17)

P̂+
t,t−1|N = P̂+

t−1Gt−1. (18)

B.2 EM ALGORITHM FOR KALMAN SMOOTHING

The authors in Shumway & Stoffer (1982) explore the estimation of Θ = {F,Q,R} in support of the
state estimation using the Expectation-Maximization algorithm. Under the assumption of Gaussianity,
the conditional expectation of the likelihood

EX|Y ;Θ̂r
[log(P (y1, ..., yN , x1, ..., xN ; Θ)]

can be expressed as a function of {x̂+(r)
t|N }Nt=1 which are conditioned not only on y1, ..., yN but also

on Θ̂r (the estimates of F , R, and Q in the rth iteration of the EM algorithm). Setting the derivative
of the resulting expression with respect to {F,Q,R} to zero yields

F (r+1) = BA−1 (19)

Q(r+1) =
1

N
(C −BA−1BT) (20)

R(r+1) =
1

N

N∑
t=1

((yt −Hx̂
+(r)
t|N)(yt −Hx̂

+(r)
t|N)T +HP̂

+(r)
t|N HT) (21)

where

A =

N∑
t=1

P̂
+(r)
t−1|N + x̂

+(r)
t−1|N x̂

+(r) T
t−1|N (22)

B =

N∑
t=1

P̂
+(r)
t,t−1|N + x̂

+(r)
t|N x̂

+(r) T
t−1|N (23)

C =

N∑
t=1

P̂
+(r)
t|N + x̂

+(r)
t|N x̂

+(r) T
t|N . (24)

The EM algorithm then alternates between the estimates of the parameters Θ and the (smoothed)
state estimates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 4 Estimating αt iteratively

1: for iteration iter = 1, 2, ..,MaxIterations do
2: Estimate Sc

t given ψ̂i,j,t−1, α̂t which yield [ψ̂t]i,j . In our work, this is done via Agglomerative
Hierarchical Clustering.

3: Compute Ê[[Wt]i,j] and ˆV ar([Wt]i,j) based on Sc
t as described above

4: Estimate α̂t using equation (27).
5: end for

C CALCULATION OF THE FORGETTING FACTOR αt

For completeness, we here summarize the derivation of the adaptive forgetting factor presented in
(Xu et al., 2014). Let K denote the total number of clients, and let L(α) be the Frobenius norm of
the difference between the estimated and the true similarity matrix, i.e.,

L(α) = ∥ψt − αtψ̂t−1 − (1− αt)Wt∥2F (25)

Then the risk function R(α) = E[L(α)] can be shown to take the form

R(α) =

K∑
i=1

K∑
j=1

{(1− α)2V ar([Wt]i,j) + α2([ψ̂t]i,j − [ψt−1]i,j)
2}, (26)

where [Wt]i,j , [ψ̂t]i,j and [ψt]i,j denote the entries at index (i, j) of matrices Wt, ψ̂t and ψt, respec-
tively. To obtain this expression, it is assumed that E[[Wt]i,j] = [ψt]i,j and V ar([ψt]i,j) = 0. Taking
the first derivative of R(α) w.r.t to α and setting it to zero yields

α̂t =

∑K
i=1

∑K
j=1 V ar([Wt]i,j)∑K

i=1

∑K
j=1([ψ̂t]i,j − [ψt]i,j)2 + V ar([Wt]i,j)

. (27)

Note that the calculation in (27) requires E[[Wt]i,j] and V ar([Wt]i,j), which in turn requires knowl-
edge of the clustering solution Sc

t , which depends on αt. Xu et al. (2014) proposed to estimate
E[[Wt]i,j], V ar([Wt]i,j) and αt iteratively. Suppose client l is assigned to cluster c; then for j ̸= l,

Ê[[Wt]i,j] =
∑
i=l

∑
j∈c,j ̸=l

1

|c||c− 1|
[Wt]i,j (28)

and

Ê[[Wt]i,j] =

C∑
i=1

1

C
Wi,i. (29)

For k and l in distinct clusters c and d, respectively, it holds that

Ê[[Wt]k,l] =
∑
i∈c

∑
j∈d

1

|c||d|
[Wt]i,j . (30)

Estimates of the variances can be computed in a similar manner and are thus omitted for the sake of
brevity. The resulting procedure is formalized as Algorithm 4. In our simulations, we set the number
of iterations to 5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D PROOF OF LEMMAS AND THEOREM

Using β-smoothness assumption of ft,k functions, it can be shown that St is β-smooth. Then we
have

St,w,γ(θt+1)− St,w,γ(θt) =
1

K

K∑
k=1

St,w,γ,k(θt+1)− St,w,γ,k(θt)

≤ 1

K

K∑
k=1

⟨∇St,w,γ,k(θt), θt+1 − θt⟩+
β

2
∥θt+1 − θt∥2

= ⟨∇St,w,γ(θt), θt+1 − θt⟩+
β

2
∥θt+1 − θt∥2

= −η
2
⟨∇St,w,γ(θt), ∇̃St,w,γ(θt) + ϵproj⟩ −

η

2
⟨∇St,w,γ(θt), ∇̃St,w,γ(θt) + ϵproj −∇St,w,γ(θt)⟩

− η

2
∥∇St,w,γ(θt)∥2 +

η2β

4
∥∇̃St,w,γ(θt) + ϵproj −∇St,w,γ(θt) +∇St,w,γ(θt)∥2

+
η2β

4
∥∇̃St,w,γ(θt) + ϵproj∥2

where ϵproj represents the projection error.

Therefore,
St,w,γ(θt+1)− St,w,γ(θt)

≤ −(
η

2
− η2β

4
)∥∇St,w,γ(θt)∥2 − (

η

2
− η2β

4
)⟨∇St,w,γ(θt), ∇̃St,w,γ(θt) + ϵproj −∇St,w,γ(θt)⟩

+
η2β

4
∥∇̃St,w,γ(θt) + ϵproj −∇St,w,γ(θt)∥2

≤ −(
η

2
− η2β

4
)∥∇St,w,γ(θt)∥2 − (

η

2
− η2β

4
)⟨∇St,w,γ(θt), ∇̃St,w,γ(θt)−∇St,w,γ(θt)⟩

− (
η

2
− η2β

4
)⟨∇St,w,γ(θt), ϵproj⟩+

η2β

2
∥∇̃St,w,γ(θt)−∇St,w,γ(θt)∥2 +

η2βϵ2

2

≤ −1

2
(
η

2
− η2β

4
)∥∇St,w,γ(θt)∥2 − (

η

2
− η2β

4
)⟨∇St,w,γ(θt), ∇̃St,w,γ(θt)−∇St,w,γ(θt)⟩

+
1

2
(
η

2
− η2β

4
)ϵ2 +

η2β

2
∥∇̃St,w,γ(θt)−∇St,w,γ(θt)∥2 +

η2βϵ2

2
.

By applying the conditional expectation E[·|θt] to both sides of the inequality, we obtain

(
η

4
− η2β

8
)∥∇St,w,γ(θt)∥2

≤ E[St,w,γ(θt)− St,w,γ(θt+1)] + η2
β

2

σ2(1− γ2w)

W 2(1− γ2)
+ (

η

4
− η2β

8
+
η2β

2
)ϵ2

= St,w,γ(θt)− St+1,w,γ(θt+1) + St+1,w,γ(θt+1)− St,w,γ(θt+1) + η2
β

4

σ2(1− γ2w)

W 2(1− γ2)

+ (
η

4
− η2β

8
+
η2β

2
)ϵ2.

Rearranging the left and right side terms gives the inequality in Lemma 1.

Next, we derive the upper bounds for St+1,w,γ(θt+1)−St,w,γ(θt+1) and St,w,γ(θt)−St+1,w,γ(θt+1).
Recall that each loss function ft is upper bounded by M , i.e., |ft(x)| ≤M . Then

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

St+1,w,γ(θt+1)− St,w,γ(θt+1) =
1

W

w−1∑
j=0

γj(ft+1−j(θt+1−j)− ft−j(θt+1−j))

=
1

W
[ft+1(θt+1)− ft(θt+1) + γft(θt)− γft−1(θt) + · · ·

+ γw−1ft−w+2(θt−w+2)− γw−1ft−w+1(θt−w+2)]

≤ M(1 + γw−1)

W
+
M(1− γw−1)(1 + γ)

W (1− γ)

St,w,γ(θt)− St+1,w,γ(θt+1) =
1

W

w−1∑
j=0

γj(ft−j(θt−j)− ft+1−j(θt+1−j))

≤ 2M(1− γw)

W (1− γ)
This completes the proof of Lemma 2 and 3.

Using the inequalities above, we derive an upper bound on ∥∇St,w,γ(θt)∥2 as
∥∇St,w,γ(θt)∥2

≤
2M(1−γw)
W (1−γ) + M(1+γw−1)

W + M(1−γw−1)(1+γ)
W (1−γ) + η2 β

4
σ2(1−γ2w)
W 2(1−γ2) + (η4 − η2β

8 + η2β
2)ϵ2

(η4 − η2β
8)

.

Substituting η = 1
β yields

∥∇St,w,γ(θt)∥2

≤ 8βM

W
(
2(1− γw)

1− γ
+ (1 + γw−1) +

(1− γw−1)(1 + γ)

1− γ
) +

2σ2(1− γ2w)

W 2(1− γ2)
+

5

8
ϵ2

≤ 8βM

W
(
2(1− γw)

1− γ
+ (1 + γw−1) +

(1− γw)(1 + γ)

1− γ
) +

2σ2(1− γ2w)

W 2(1− γ2)
+

5

8
ϵ2

=
8βM

W
(
(1− γw)(3 + γ)

1− γ
+ (1 + γw−1)) +

2σ2(1− γ2w)

W 2(1− γ2)
+

5

8
ϵ2

≤ 8βM

W
(4

(1− γw)

1− γ
+

1 + γw−1

1− γ
) +

2σ2(1− γ2w)

W 2(1− γ2)
+

5

8
ϵ2

≤ 32βM

W
(
2− γw + γw−1

1− γ
) +

2σ2(1− γ2w)

W 2(1− γ2)
+

5

8
ϵ2.

When γ → 1−,

lim
γ→1−

∥∇St,w,γ(θt)∥2 ≤ 1

W
(64βM + 2σ2) +

5

8
ϵ2.

Telescoping t from 1 to T , we obtain

lim
γ→1−

T∑
t=1

∥∇St,w,γ(θt)∥2 ≤ T

W
(64βM + 2σ2) +

5

8
ϵ2T

and

lim
γ→1−

1

T

T∑
t=1

∥∇St,w,γ(θt)∥2 ≤ 1

W
(64βM + 2σ2) +

5

8
ϵ2

This concludes the proof of Theorem 1.

E EXPERIMENTAL RESULTS ON TIME-SMOOTHED GRADIENT DESCENT

The time-smoothed gradient descent algorithm DTSSGD, proposed by Aydore et al. (2019), presents
a regret framework for non-convex models that deals with the concept drift associated with a dynamic
environment. We compare our results with those obtained by training the encoder using DTSSGD.
The experiments are conducted on the RTD dataset with ten clients partitioned into 3 clusters created

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

using Dirichlet sampling (β = 0.1). As before, the encoder was trained for 10 rounds but with the
optimizer set to the one proposed in (Aydore et al., 2019). Training of the output layer consists of a
single round involving all the labeled samples available at a client. We vary the parameter γ (used to
control forgetting) and the smoothing window size w. The results are presented in Table 5.

γ w = 1 w = 3 w = 5 w = 7
0.7 0.988 0.984 0.988 0.986
0.8 0.988 0.990 0.982 0.985
0.9 0.988 0.980 0.990 0.990

Table 5: Results for Fed-REACT using the optimizer from (Aydore et al., 2019).

The results suggest that increasing w does not lead to significant performance gain; therefore, in our
experiments we set w = 1.

18

	Introduction
	Contribution of this work
	Related Work
	Problem Statement

	Algorithm development
	Theoretical Analysis
	Experiments
	Experiments on the RTD dataset
	Self-supervised vs. supervised models
	Clustering performance
	Ablation study

	Experiments on the SUMO EV dataset

	Conclusion
	Task model training assisted by snapshot clustering
	Kalman Smoothing and the EM algorithm
	Kalman Smoother
	EM Algorithm for Kalman Smoothing

	Calculation of the Forgetting Factor t
	Proof of Lemmas and Theorem
	Experimental results on time-smoothed gradient descent

